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Nomenclature 

radius or half width of a contact area 

radius or half width of constriction region 

equivalent f la tness  deviation (see Fig. 1) 

interface conductance, h = - 
AaR 

thermal conductivity 

length of specimen 

1 

equivalent length of contact resistance 

contact pres sure 

rate of heat flow 

rate of heat flow per uni t  depth 

resistance 

dimensionless resistance, 

radial coordinate 

R k Aa 

temperature 

a temperature difference 

constriction ratio,  x = a/b 

ca r t  esian c oorc2i.nat e 

axla l  coordinate 

S L Z - ~ ~ C ?  3r spc-imen 1 

sirface or spscimen 2 

a;,qarent contact area 

t o t  .d. contact resist mce 

i n t e r s t i t i a l  sv.bstar;c$ 

mzcroscopic constrictions or contact regions 

isothermal in te r fac ia l  plane 

microscopic constrictions or contact areas 

t o t a l  

L '  
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1. Current Status 

1.1 Introduction 

O u r  previous studies [1,2] have led t o  the development of a r e s t r i c t i v e  

model which was successful at  quantitatively predicting the thermal contact 

resistance. Its a b i l i t y  t o  quali tatively explain many of the apparent dis- 

crepancies i n  the l i t e r a t u r e  and its agreement w i t h  the v a s t l y  varied 

experimental data which were obtained have demonstrated i ts  conceptionaJ. 

correctness. The current endeavors are:  ( i )  t o  remove the r e s t r i c t ions  

present i n  the or iginal  model (some of the r e su l t s  of such studies have 

already been reported [2]), and (ii) t o  be t t e r  our understanding of the  

basic mechanisms of the thermal contact resistance. The l a t t e r  i s  perhaps 

our most important ob3ective. One can eas i ly  argue that the proposed model 

i s  not capable of predicting the additional resistance of a complex bolted 

jo in t ;  however, one must also agree tha t  the proposed model has indeed been 

successful i n  enriching our understanding of the extremely complex problem 

of in te res t .  

"more r ea l i s t i c "  surfaces ha-re added l i t t l e  t o  our unc?.erstanding and t o  oim 

a b i l i t y  t o  predict  the resistmce of jo in t s  i n  other physical si tuations.  

In contrast, the numerous studies which have been made with 

---- 

The new chamber whlch was recently constructed is  i n  the process of 

being checked out, Some new instrwnen-i;atioii fo r  this fac i l i ty  has nnt. ?et 

arrived. I n  addS.tion, it is f e l t  t h a t  with the small resources available, 

greater  emshasis at  the present time on analytic studies might be more 

f r u i t f u l .  Ekperiaental studies w i l l  then pgain be made t o  evaluate the 

results and conclusions drawzi from these studies a 

Brief descr lgt iois  of several i rvest lgat ions which are i n  progress 

w i l l  now be given, The thermal contact resistance problem can be divided 

i n t o  two per ts :  (i) Given the contact gegmetry, determine the additional 
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thermal resistance due to the presence of the interface and (ii) Given 

the specimen geometry and load, determine the contact areas. 

part of the problem is being studied by Mr. McNary. 

reported in Reference 133. 

the details will not be available until the thesis is completed. 

obdective of the study is to remove the restriction on the model caused by 

the inapplicability of the Hertz's solution when the macroscopic contact 

area is relatively large. 

the influences of thermal strain is also desirable. 

The second 

Part of his work was 

Since this work is for his Ph.D. dissertation, 

The 

A further extension of this analysis to include 

Section 1.2 describes preliminary results from analytical studies which 

show the influences of microscopic resistances on the macroscopic constriction 

resistance. 

to include an interstitial substance . 
Section 1.3 gives the formulation for the extension of the model 

Section 1.4 describes the results of constriction resistance calculations 

for two-dimensional plane constrictions. 

problem of the first type, i.e., given the contach geometry, determine the 

constriction resistance. 

These calculations are for the 

The Hertz's Equation could be employed to deternix 

the 

1.2 

required contact area in some cases. 

1.2.1 Formvlation of the Problem 

In the study of the rela5ive imsortance of the macroscopic an0 micro- 

it is of great importance to know how the macroscopic 

---- 

M scopic resistances 

and microscopic resistances are interrelated. It is men that they are nvi 

independent since the presence of a microscopic resistance would, of coux?,, 

-. ** 
The macroscopic resistances alw~ys refer to the large scale or macroscosic 
constriction resistances. 
effects of the film resistance and the small scale or microscopic con- 
striction resistances. 

The microscopic resistances refer to the com'xl~scl. 
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affect the macroscopic temperature and f lux  d is t r ibu t ion  and consequently 

the macroscopic constriction resistance. 

The model employed i n  [l] is  shown i n  Figure 1. Only oge region w i l l  

be consicered as shown i n  Figure 2. The governing d i f f e ren t i a l  equation and 

boundary conditions are as follows: 

* =  I 

I 
i 

Fig. 
T = T(r,z) 

2 Fin i t e  Cylindrical Region 

The boundary condition 

The change in the 

RS’ 
scopic resistance, 

was considered by Holm 

d2 
(4) 

*?! 
across the macroscoplc contact remains t o  be specified,  

macroscopic constriction resistance , %, if a micro- 

is uniformly dis t r ibuted over the  macroscopic contact 

[4] and also was discussed i n  [l]. 

si tuat ions were considered. Holm suggested that if Rs is 

wi th  F$, and i s  uniform over t h e  macroscopic contact area, 

the heat f lux  through the contact region is approximately 

The l imiting 

very large compared 

it followed t h a t  

uniform. He w e n t  

on t o  assume the  f lux  was constant and determined the macroscopic constr lc t ica  

For a perfect macroscopic contact, i.e., neglecting Rs, t h i s  boundary is  
‘*simply a constant temperature boundary. 
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resistance with this boundary condition. 

is approximately true, it cannot be employed in the calculation of %, a 

secondary resistance. A closer examination of the problem shows that if two 

specimens have the same radius bL and if the distribution of the microscopic 

resistance is axially symmetric (it is not necessary to assume the distribution 

is uniform), an isothermal surface exists within the plane of contact. 

presence of the microscopic resistance over the boundary is analogous to a 

convective type boundary condition with a finite surface conductance h. 

boundary condition to be employed in the determination of the total contact 

resistance is: 

Although this boundary condition 

- 

The 

* The 

&e + k - (r,o) = h[T(r,o) - To], 0 5 r 5 8 . ~  aZ 

where h is a function of r if the microscopic resistance is not uniformly 

distributed; otherwise, it is a constant. 

isothermal surface in the contact plane. 

To is the temperature of the 

The contact resistance is given by: 

L - -  TL - To R =  
9 kvb: 

where q is the rate of heat flow through the region. 

contact resistance is simply: 

The dimensionless 

The region of the microscopic resistance is assumed to be of negligible 
thickness. This assumption is probably a valid one. 



. 7  

I c 
6 

It is seen t h a t  i n  order t o  calculate the contact res is tance the  heat 

flow q is required. 

(2) through (5) 

To determine q Equation (1) with the boundary conditions 

must be solved; however, first h m u s t  be determined. 

Consider two regions of different materials i n  contact as shown i n  

Figure 1. 

across the macroscopic contact area. 

dis t r ibut ion would add l i t t l e  complication; however, the r e su l t s  would be 

of less general value.) 

solution of t h i s  problem, it is required that the flux dist r ibut ions across 

the contact area of each region are identical .  

and boundary condition it can be seen that this w i l l  be the case if  the 

microscopic resistance i s  parti t ioned such that 

Assume a known microscopic resistance is  uniformly dis t r ibuted 

(A non-uniform axially-symmetric 

If one is t o  consider only one region for  the  

From the d i f f e ren t i a l  equation 

and R1 + R2 = 1 
Rs Also h = 

Theref ore : 

1 
RS k, R1 = 

o r  

kl 
5 1 + -  

2 = hs El + -1 
k - 

hl - Tf .L" Rs k2 

It can thus be seen tha t  the requirement of e q u d  flux dis t r ibut ions 

( 9 )  

through the contact area is sa t i s f ied  if region 1 has a dis t r ibuted condiichace 
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The boundary condition ( 5 )  is then valid along the interfacial given by (9) . 
plane, 

two matjng materials separated by a small scale resistance, RS, by finding 

the con?;act resistance of one of the regions with the conductance at the 

interface given by (9) .  

would be the same for both regions; hence, the total resistance could be 

easily calculated. 

It is therefore possible to find the contact resistance between any 

The value of the dimensionless contact resistance 

1.2.2 Solution Procedure -+ 

& previously discussed in Reference [31, little success has been 

achieved in solving problems with mixed boundary conditions analytically. 

For tais reason, the numerical procedure employed in the solution of the 

problem for the case of negligible microscopic resistance (see Ref. 3) was 

employed. 

in addition to those given in 131. 

A difference equation for the boundary 0 5  r z  "1; is now required 

In terms of the nomenclature of [31, a 

general difference equation valid for the points on this boundary is: 

& hl Ar 
2r 3 ) Tl,j+l 2, 3 Zr,) TI,J-~ + - 5 To + 2 T  +(lo- & (1 4- - 

hl Ar 
kl 

- (4 t -) Tl,j = 0 

where h is given by Equation ( 9 )  . 
ingly and the preliminary results which were obtained follow. 

The computer program was modified accoyd- 1 

w 
1.2.3 Results of Numerical Computations 

The object of this study was to determine the influence of microscopic 

resistances on the macroscopic constriction resistance. However, the questiorl 

These computations were made by Mr. Bruce Spencer while taking a special 
problem course under the author's direction. 
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whlch ore r ea l ly  needs t o  answer, from an engineering standpoint, is what 

e r ror  dcles one camnit if  it is assumed t h a t  the macroscopic and microscopic 

resistarices are independent and the t o t a l  contact resistance is determined 

by a simple addition, i.e., by assuming the two resistances are i n  series. 

Furthermore, it is  seen t h a t  the macroscopic and microscopic resistances 

have l o s t  t h e i r  ident i ty  since one can only define a resistance between 

isothermal planes. Tbus, the macroscopic resistance used i n  the calculation 

of the contact resistance is its value fo r  the case when Rs I 0 and the 

microscopic resistance used i n  t h i s  calculation is the value of the  contact 

resistance f o r  the case when bL is made equal t o  %. 
A ser ies  of numerical calculations were made t o  determine the t o t a l  

* 
dimensionless contact resistance Rct for the problem as specified by 

equations (1) through (5) for several values of the constriction r a t i o  

5(=%/bL),  and f o r  several lengths. This solution was compared with the 

r e su l t  obtained by adding R: + < . In these calculations, values of Rs 

and 3 were assumed; was obtained from R e f .  3 .  

Table 1 gives a comparison of these resul ts .  

* 

p;z 
In examining the apparent 

trends i n  these values it must be remembered tha t  no great  e f f o r t  was expended 

to rei i i~ve trilu?zatior? errors. The r e su l t s  are of an exploratory nature; 

minimum computer time was expended i n  obtaining these answers. 

and 4 give the specific values employed i n  obtaining Table 1. 

Tables 2, 3, 

The conclusions which can be drawn from these results are:  

1. The t o t a l  contact resistance of an interface i s  always greater  

than the value obtained by assuming Rs and % are  independent 

resistances i n  ser ies .  

* * 

2. The er ror  committed by assuming t h a t  R: and $ a re  independent 



1.0405 
1.0454 

1.0372 1.0704 
1 . 0621 1.0925 

9 * 

[z. Rft R: ] Table 1 Dimensionless Ratio 

833 233 
\ I  I I 

I I I 

1.00 1.0458 1 . 0641 1.0891 

0200 
J600 
1.00 

1.0076 

1.0112 

1.0078 

1.0163 

1.0125 

1 . 0214 
1.0366 

1.0366 

. 200 

.600 

1.00 

1.0466 

1.0471 

- 

1 0377 
1.0520 

1.053? 

1.0842 

1.0924 

1 . 0870 

* 
Table 2 Comparisons for Rs ,N pz" 

-233 . 500 833 

R i  = .0460 R* = 2.281 
S 

.200 

* 
.0928 

.€bo 

* 
R~ = .0460 R: = 2.281 

?i 
Rct= 4.745 

R: = .0460 R Z  = 2.281 I R: = .5380 

1.00 

* Ret= ,1002 
* Ret= 1.145 
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1 

e233 . 500 833 
j' 

* * 
Rs = ,4562 R~ = ,1076 R," = .0092 

= 1.772 
* * 

200 

* 
Rct= 2.332 Rct= -5091 RCt= ,0541 

r * 
R: = .4562 R: = .io76 Rs = e0092 

600 % = 2.258 5306 < = - .Ob59 
-0552 

* 

* 2.71-42 
46 * R ~ ~ =  .0603 

RCt = 2.842 Ret=- ,6714 

R: = 2076 R: = .0092 

1.00 R L Y -  = .0460 
00552 

RCt= -6800 Ret= .0600 * * 

* 
S 

Table 3 Comparison for R 2 10 $ 



* * 
and t h a t  the t o t a l  contact resistance is  simply (Rs I %) is 

small i n  a l l  cases and, considering the nature of the problem, 

could eas i ly  be neglected. < or  if $>> Rso 3. This error  vanishes if R >> 

4. 

* * 
S 

Y * 
The apparent macroscopic constr ic t ion resistance (Rct - RE), i n  

the presence of microscopic resistances can differ widely from 
* 
S 

the  value obtained when R i s  equal t o  zero. 

1.3 The Generalization of the Model t o  Include an I n t e r s t i t i a l  Material 

The investigation has been centered i n  the past  on the study of clean 

interfaces  i n  vacum environments. This approach was log ica l  since: 

1. 

2. 

3. 

The metal-to-metal conduction mode of heat t ransfer  across an 

interface is  the most fundamental. Without a thorough under- 

standing of the metal-to-metal conduction mode incorrect 

conclusions could easi ly  be drawn from experimental measure- 

ments of i n t e r f ac i a l  resistances f o r  the combined mode case. 

The problem is of greater importance i n  the absence of in te r -  

s t i t ia l  conduction since the contact resistance is  then much 

larger.  

The a b i l i t y  t o  predict  t ie  magziitiu&e of the  c m k a c t  resistance 

was poorest f o r  interfaces i n  vacuum environments and the need 

t o  know these values was most urgent i n  t h i s  area. 

It is  fe l t ,  however, t h a t  a limited pa ra l l e l  e f fo r t  on the study of 

interfaces  with the addition o f t h e  i n t e r s t i t i a l  conduction mode would be 

prof i t ab l e  since : 

1. This study could be conducted i n  conjunction with the  present 

experimental and theoretical  investigations with re la t ive ly  l i t t l e  

additional e f for t .  



2. This study might reveal reliable methods of decreasing the 

magnitude of the thermal contact resistance i n  a vacuum 

environment. For example, it could lead t o  more successful 

theoret ical  predictions by giving a method of insuring the 

lack of importance of  microscopic resistances which are, 

of course, d i f f i c u l t  t o  predict. 

The study should prove worthwhile i n  i t s  own r igh t  f o r  the 

following reasons. 

importance i n  other environments as, f o r  example, i n  nuclear 

reactor cores, atmospheric operation and tes t ing  of space 

vehicles, e tc .  

or may already ex i s t  for  employment as i n t e r s t i t i a l  substances 

in vacuum environments for  both short  and long duration f l ights .  

The formulation of the problem and a discussion of the solution procedure 

being pursued w i l l  now be given. 

3. 

Firs t ,  the problem is of in t e re s t  and 

Second, satisfactory materials may be developed 

Since the thickness of in te rs t ices  i s  i n  most cases s m a l l  compared with 

other dimensions, both natural  convection and conduction pa ra l l e l  t o  the  

interface can be neglected in the calculation of the  heat transferred through 

the  i n t e r s t i t i a l  substance. 

The basic model developed i n  Ref. 111 w i l l  again be employed in the 

study of th i s  aspect of the problem. 

The f la tness  deviation or waviness which gives r ise t o  macroscopic con- 

s t r i c t i o n s  is simulated by spherical caps on the end surfaces of the cylindri- 

c a l  contacting members. 

surface of the specimen a t  zero load is, by definit ion: 

Figure 1 gives the geometry of in te res t .  

The distance, f(r), from the contact plane t o  the 



2 f i ( r )  = (-) r di , i = 1 or  2 
bL 

The distances 4 and d2 are  indicated i n  Figure 1. 

surfaces a t  zero load can a l so  be obtained from (11) if di i s  replaced by the 

The distance between the  

t o t a l  f la tness  deviation dt(= 5 + d2). The distance between the surfaces is, 

i n  general, a function of the apparent contact pressure p, the i n i t i a l  geometry 

and the radial coordinate r. 

geometry of the present model t h i s  distance a t  zero load is:  

This distance w i l l  be cal led ft(p,r). For the 

This function a t  f i n i t e  contact pressures w i l l  be known only after the f i n i t e  

e l a s t i c  contact problem being considered by McNary [31 is  solved. It is  

assumed that  t h i s  distance is  negligible within the macrcscopic contact area. 

T h i s  i s  equivalent t o  neglecting the microscopic resistances. 

of even a poor i n t e r s t i t i a l  conductor such as air should vas t ly  decrease the 

The presence 

microscopic resistances which were found t o  be s m a l l  even f o r  interfaces 

without an i n t e r s t i t i e l  acbatariee. 

if r e  &L 
should fur ther  substantiate t h i s  assumption. 

Tkxs, t.he aestimption t h a t  f t (p , r )  = 0 

The r e su l t s  of the present macroscopic analysis i s  probably valid. 

The present problem is  seen t o  be of the same nature as t h a t  presented 
k, 

f* where i n  Section 1.2. The microscopic conductance h now becomes 
S 

kf is  the thermal conductivity of the i n t e r s t i t i a l  substance. 

condition (4) is  no longer applicable since the i n t e r s t i t i a l  material provides 

a conductive path over the  complete apparent contact area. Boundary condition 

Boundary 
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(5) now can be applied over the entire contact area: 

where 

kf kl 
k2 hl = 'W [I+--] 

Thus, it i s  seen tha t  i n  t h i s  case the conductance, h, of Eq. (13) is a 

function of the contact pressure and the radius r. 

be a function of r only. 

( a  f i n i t e  value could be employed if desired and the importance of microscopic 

resistances could then be eas i ly  seen); therefore, f o r  r 5 one could e i the r  

employ the boundary condition T(0,r) = To or simply use a very large value 

of h i n  the boundary condition described by (13) . 

For a given load, h would 

If r 5 &L, h becomes i n f i n i t e  since f (p,r) = 0 t 

The solution procedure being pursued f o r  the problem as formulated is  

similar t o  tha t  employed i n  Section 1.2. 

program are @gain required. 

since, i n  general, the function ft(p,r) i s  not known. 

f'unction could be made t o  obtain the bounding values of the contact resistance 

Only minor changes i n  the computer 

Only zero load solutions can be presently obtained 

Approximations of th i s  

88 u s^rilictioz of lo& with 2 i n i t i e  gepletrg. 

The fineness of the g r id  required for the numeric& calculation of t h i s  

combined mode problem should be considerably coarser than tha t  required i n  the 

absence of the i n t e r s t i t i a l  conduction mode [see Ref . 21 . 
i n  the heat flux at the point z = 0, r = a.r, is  no longer present since the 

var ia t ion  i n  h with respect t o  r is i n  general continuous. 

The discontinuity 



1.4 The Influence of the Region Geometry on the Macroscopic Constriction 
Recistance--Plane Geometxy 

1.4.1 Introduction and Problem Formulation 

It is usually assumed t h a t  the contact areas which are formed between 

contacting bodies are  c i rcu lar  i n  nature. For t h i s  reason most of the e f for t  

expended i n  the calculation of constriction resistances was concentrated on 

circulas  contact areas. The most formidable of these problems is probably 

that  of the f i n i t e  cyl indrical  region. This problem was solved by numerical 

calculations and the resu l t s  of these calculations were reported i n  Ref. 2. 

Extensions t o  t h i s  solution were reported i n  Sectiom 1.2 and 1.3 of t h i s  

report. 

In te res t  was recently expressed i n  two-dimension& plane constrictions 

The numerical solution procedure recently developed f o r  the axially- 153 

symmetrical case (21 was eas i ly  modified t o  the plane problem. (Several 

plane cases were actually employed i n  the ear ly  development of the computer 

program. ) Theref ore, it seemed worthwhile t o  repeat these calculations fo r  

the plane case. 

The region under consideration is  shown i n  Figure 3. The governing 

d i f fe ren t ia3  equation and boundary conditions are:  

4” 

Fig. 3 
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A differencing procedure similar t o  that  used i n  [2] was employed in  

the numerical solution of these equations. The schemes used t o  speed 

convergence of the i t e r a t ion  procedure were a l so  similar. 

employed is shown i n  Figure 4. 

directions. 

network was employed near the interface. 

t r iangular  elements. 

could be varied; n was dependent upon the length L and the value of m (see 

Fig, 4) 

The gr id  network 

Equal increments were used i n  the y and z 

A coarse network was used atmy from the  interface and a f i n e  

These networks were joined with 

The number of columns m, and the number of f ine  rows k 

Figure 4 



1.4.2 Results of Numerical Computations 

Since i n  the par t icu lar  solution procedure which was employed, solutions 
* 

were obtained f o r  two different spacial increments, 

truncation e r ror  w a s  possible. 

which is  of re la t ive ly  l i t t l e  importance f o r  a problem of the nature of thermal 

contact resistance. 

l imi t ing  case of L >> b showed that  the average e r ro r  was a2proximately 2$. 

Since this s m a l l  e r ror  w a s  of l i t t l e  concern, a l l  the numerical computations 

could be carr ied out i n  approximately 8 minutes of production time on the 

7094 d i g i t a l  computer. 

of the nomenclature w i l l  be given. 

an estinate of the 

The er ror  was estimated t o  be several percent, 

The exact solution which was la ter  obtatned for  the 

Before these r e su l t s  are reported, e 3rief discussion 

According t o  the usual definition, the constr ic t ion resistance, R, is: 

where Rt is the t o t a l  resistance and :c is  the constr ic t ion r a t i o  a/b. 

A dimensionless resistance as defined i n  Ref. 2 w i l l  be again employed. 

It is, by .definition: 

R k Aa 

b R* = 

where Aa is the apparent contact area, k is  the thermal conductivity of the  

material, and b is  the  half-width of the region. 

region i n  the cyliadricaJ. problem.) 

proportional t o  the depth, the dimensionless resistance is independent of 

the depth. 

(b was the radius of the 

Since the resistance R is  inversely 

For convenience a unit depth w i l l  be employed. Therefore, 

17 and 49 columns were employed i n  the two solutions. 
"was used as an i n i t i a l  approximation f o r  the second. 

The first solution 
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* 
R I 2k R f o r  the plane region of width 2b. The dimensionless constriction 

resistance is 

2kA T R* = - 
9' 

where q' i s  the r a t e  of heat flow per un i t  depth. 

The results obtained from the numerical solution are given i n  Table 5. 

The dimensionless constriction resistance as defined by Eq. (22) is l i s t ed .  

It i s  the constriction resistance of one region only. For two plane regions - 
of the same width, length and t n e  of material i n  contact, the  t o t a l  macro- 

scopic constriction resistance or the so-called contact resistance is  - twice 

the  value given i n  Table 5 .  Table 6 shows the var ia t ion of the r a t i o  

R*(L/b) / R*(L/b = -) with x and L/b. 
wf 1.4.3 Exact Solution for t h e  Case of L >7 b 

Constriction resistance problems are formidable ones due t o  the presence 

of the mixed boundary condition along the  boundary forming the plane of 

contact. The boundary is  isothermal over the7conkact area and is  a zero f lux 

surface over the remainder of the plane of contact. This  suggests that one 

e ~ ~ l y  ccLfnmal rna-mirr_cr -- - techniques t o  t r y  t o  eliminate t h i s  mixed boundary 

condition. These techciques, of course, have orAy been successfully employed 

f o r  plane regions; therefore, these methods of solution were not possible f o r  

the ax ia l ly  symmetric case studied i n  [ 2 ] .  

The boundary conditions of the types given by equations (16) through (19) 

a r e  invariant with a change of variables arising from a conformal transfor- 

mation. Therefore the  new form of the boundaries i s  of primary interest .  

)c3c 
The nomenclature i n  t h i s  section w a s  chosen t o  conform with standard complex 
variable nomenclature j conscquenEy, there are several mi?!or confl ic ts  orf-;h 
t h a t  employed elsewhere. 
2' = x' + i y ' ;  
f o r  the constriction r a t i o  instead of the l e t te r  x which was previously 
employed. 

The complex variables used are: z = x + iy;  
z"'= x" f iy" and w = u f iv;  therefore, a/b i s  now us?:.'! 
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According to Ref. 161 the transformation 

infinite strip into the upper half of the z *  plane as shown in Figure 5. 

Two rno?.- successive transformations are then applied. 

z" = zr/sin z is a simple magnification by the factor l/sin a. This 

z *  = sin z transforms the semi- 

The first one 

allows the use of the transformation w = sin-' z", which is the inverse 

of the initial transformation. 

plane into a semi-infinite strip. 

is again obtained, however, the mixed boundary condition has been removed. 

The successive transformations which were employed are clearly indicated 

in Figure 5. 

It transforms the upper half of the z" 

It is seen that the initial geometry 

The temperature distribution in the w plane is easily seen to be: 

T = T o -  4'V 
n k  

(23) 

where qf is the rate of heat flow per unit depth. 

of the original problem, v must be determined as a function of the original 

variables x and y. 

To obtain the solution 

Consider first going from T as a function of v to T as a function of 

x" ctnd y". The transformation is : 

z" = sin w = sin ucosh v f i cos u sinh v 

Therefore : 

y12 $25- = 1  
cosh2 v sinh2 v 

(24) 

Equation (24) shows that the isotherms in the z" plane are ellipses 

whose centers are at the origin and the foci are at y"= 0, XI'= 

the definition of an ellipse it follows that: 

1. From 



-b -a 

Y 

Y' 

T = To 1 

t y" 

a b=?r/2 F E D  

x' = sin a 4 
A x' P B  

T -91 To 
z' = s i n  z 

V 

-1 w P s i n  z" 

Fig. 5 Successive Transformations Employed 
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or:  

where : 

Also : 

2 cosh v = [ (x" + 1)" e y'f2]1/2 + [ (x" - 1)" + y1f2]1/2 

v = kn [Y G (Y2 - 1) 1/2 -J 

s i n  x cosh y cos x sinh y 
cy1' = a d  y" = ~a ~a s in  s i n  5 g 

therefme, i n  terms of the  original variables the temserature dis t r ibut ion is: 

T = To - -s-L { 3n [a + (Y" - 1?/21} 
P k  

where 

Y =  {[(sin x cosh y + s i n  n) a a 2  + cos2 x sinh2 y]  1/2 a a  2 s i n  2 g 

1/21 (26) + [ ( s in  x cosh y - s i n  7 ~ a 2  =) + COS" x sinh2 y]  
J c u  

The constricLion resistance is of main in te res t .  It can be obtained by 

considering a value of y t y, which i s  suf f lc ien t ly  large such t h a t  the 

temperature i s  indepeafient of X. The constriction resistance is then given 

by: 



22 

If y i s  very large, 

T Z  T o -  2 h 2 Y  a k  

and 

N cosh y 
a a  sin 5 i; 

Y -  

Theref ore : 

Equation (28) is va l id  f o r  a l l  possible values of the constriction rat io ,  

a/b; however, it fails  t o  apply 19 L/b <1 as can be seen from the numerical 

results given i n  Table 6. 

numerical results.  

Table 7 compares the exact solution with the 

~ -~ ~ 

Table 7 Comparison between Exact and Numerical Solutions 
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2. Proposed Future Research 

Future work w i l l  proceed along the l i n e s  outlined i n  the various sub- 

sections of Section 1, The Current Status. 

current studies are  incomplete but hold promise of substant ia l  reward. 

It is  seen tha t  many of the  

Experimental investigations t o  substantiate the analyt ical  studies 

should also be conducted; however, the  funds and time available may not 

permit such investigations. 
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